
MATHEMATICS OF COMPUITATION, VOLUME 25, NUMBER 113, JANUIARY, 1971 

Strongly Asymmetric Sequences Geierated 
by Four Elements 

By Frantisek Fiala* 

Abstract. Some general properties of strongly asymmetric sequences generated by m ? 1 
elements (m-SAS) are given. Computational experience with two algorithms-for listing of 
all 4-SASs of a given length n and for generating the smallest 4-SAS of length ii 1, 2, * * . 

-supports the conjecture that there exists an infinite 4-SAS. The smallest 4-SAS of length 
592 is presented. 

Let us put 

(1) Em = 10, 1, n* - 1I, 

where m ? 1. A sequence 

(2) (al, a-, , an) 

is said to be a strongly asymmetric m-sequience (mn-SAS) of length n if 
(a) ai fE E. for it ,- l,***, n; 
(b) for any j> 0, k > 0 such that j + 2k ? n two consecutive segnments (a + 1,* 

ai+k), (aj+k+1, * aj+2k) do not contain the same number (frequency) of O's, l's, *'* 

(m - l)'s. 
For instance, if m = 3 then (0102010) is 3-SAS of length 7, but (01020120) is 

no 3-SAS (for j = 1, k = 3 two consecutive segments (102), (012) contain the same 
number of O's, l's and 2's). 

An infinite sequence 

(3) (a, a, ,, a,, 

is m-SAS if for an arbitrary positive integer n the sequence (2) is in-SAS. 
P. Erdos [1] posed the problem of finding an infinite SAS using the minimal 

number of symbols. A. A. Evdokimov [2] constructed an infinite m-SAS for m = 25 
and expressed the opinion that the number m might be reduced. It is easy to establish 
that there is no infinite m-SAS for m ? 3 [2]. Therefore, I investigated the case 
m = 4. It appears that the technique used in [2] is not applicable to this case. In 
this paper some general properties of m-SASs are given and computational ex- 
perience with 4-SASs is collected. The smallest 4-SAS of length 592 is presented. 

1. We shall describe some general properties of m-SAS for m ? 1 which can be 
easily verified. 
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1. 1I. An mn-SAS 

(4) (al, *T, ant) 

has a proloiigation if there is an in-SAS 

S5) (a,, , an,, an,+l, X, an2) 

of length n2 > n,. m-SAS (4) is called an initial segment of (5). 
The set of all (finite and infinite) m-SASs can be ordered lexicographically, i.e. if 

(6) (at, * ), 

(7) (all', *a a, ), 
are two m-SASs then (6) is less than (7) if either there exists such an i, 0 < i < 
min (n,, n2), that 

(8) a' = a" for j 1, , 

and 

g9) a',+i < a''1+ 

or (6) is an initial segment of (7). E.g. (01020) is less than (0121030), (10230) is less 
than (120). 

Principle of duality. If (2) is an m-SAS then 

(10) (m- 1 -a,, '.', m- 1 -an) 

is m-SAS, too. (10) is called dual to (2) and vice versa. 
All m-SASs of a given length n form a finite chain in the lexicographical ordering. 

If (2) is the smallest m-SAS of length n then its dual m-SAS is the greatest one (of 
the same length). 

Obviously, there is an m-SAS of length n if and only if there is the smallest m-SAS 
of length n. 

1.2. If (2) is an m-SAS of length n and p is an arbitrary permutation of Em then 

(1 1) (p(a1), p(a2), * , p(a.)) 

is m-SAS, too. If (2) contains each element of Em and p is nonidentical then 

(1 2) (p(aj) , * * * , p(a.)) 5- (al,, * * -, a.) . 

1.3. Let m ? 3. Direct check shows that there is no m-SAS of length n > 7. 
Therefore, any 4-SAS of length n > 8 contains all numbers 0, 1, 2, 3. Consequently, 
the number S4 of all 4-SASs of length n > 8 is divisible by 4! = 24. For arbitrary 
m > 1, the number S' of all m-SASs of length n > 2 is divisible by m(m - 1). 

1.4. Denote by 

(13) (al, , a2- l1) 

the smallest m-SAS of length 2"' - 1. Then (13) has no m-SAS prolongation and 

(14) (a1, *. , a2^-1, m, al, **, a2- , 

is the smallest (m + 1)-SAS (of length 2`?l - 1). 
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Thus, 0, 010, 0102010, 010201030102010, 0102010301020104010201030102010 
are the smallest 1-, 2-, 3-, 4. and 5-SASs, respectively. 

Proof by induction. For m - 1 the proposition obviously holds. Assume that 
it is true for m ! 1, i.e. (13) has no m-SAS prolongation and (14) is the smallest 
(m + 1)-SAS. We prove that the proposition holds for m + 1. 

Let (a1, * * * , a2ml,m, al, ... , a2ll, a) be an (m + 1)-SAS prolongation of (14). 
If a < m then (a,, * * , a2-1, a) is an m-SAS prolongation of (13), contrary to our 
assumption. a -m is obviously impossible. Thus (14) has no (m + 1)-SAS prolonga- 
tion. 

It is easy to check that 

(15) (a1, . . . , a2m.1, m, a1, *. , a2 I, In + 1, a,, a2,,.1, in, a,, a2m_-) 

is an (m + 2)-SAS of length 2m+" - 1. Let 

(16) (b1, *** , b2-+--l) 

be the smallest (m + 2)-SAS (of length 2"+2 1). Then (b1, *.., b2.+ l) is an 
(m + 2)-SAS and therefore 

(17) (b1, * . , b2m+1.1) < (a1, , a2-l , m, al, ,.. , a2,,,1). 

(14) is the smallest (m + 1)-SAS and also the smallest (m + 2)-SAS. Hence, in the 
relation (17), the equal sign holds. (14) has no (m + 1)-SAS prolongation, thus 
b2ml = m + 1. Again 

(18) (b2m+'+1, * * * , b22m+t1) > (a1, ,* , a2m1 , ni, a,, * a2, l) 

The minimal property of (16) causes again that in (18) the equal sign holds. Thus 
(15) is the smallest (m + 2)-SAS. 

2. We consider the case mn 4. Two algorithms have been prepared. The first 
one lists all 4-SASs of a given length n in their lexicographical order. The second 
algorithm generates the smnallest 4-SAS of length n = 1, 2, *.. . Both of them were 
written in FORTRAN IV for IBM 360/67. 

2.1. We recall that the set of all 4-SASs of a given length n is ordered lexico- 
graphically (1.1). A 4-SAS of length n 

(2) (a1, a2, , an) 

may be seen as an (n-positional) integer written in the number system with the radix 
4. Therefore, we can also handle (2) as a number and add to it another number 
(in the number system with the radix 4). This feature is used in the following algo- 
rithms both for finding all 4-SASs of length n in their ascendent order and for gen- 
erating the smallest 4-SAS (2.2). 

The first algorithm runs as follows: 
2.1.1. Start with the smallest 4-SAS of the form (2). 
2.1.2. Write the current 4-SAS. 
2.1.3. Add 1 to the current sequence (in the number system with the radix 4). 

If a transfer from the most left position occurs, go to 2.1.5. 
2.1.4. Ask if the new sequence is 4-SAS. If the answer is "Yes", go to 2.1.2. If 

the answer if "No", go to 2.1.3. 
2.1.5. Stop. 



158 FRANTISEK FIALA 

A comnplete listing of 4-SASs was made for n = 1, * , 9. The numbers S. of 
all 4-SASs for n = 10, *.., 18 were found using 1.3. 

The following tables show some of the results. Table 1 contains the first 25 
smallest 4-SASs of lengths 14, 15, 16. Table 2 shows the numbers S. and the ratio 
of two consecutive S., tS,. For comparison, similar data for m = 3 are added. 

For n < 14, every 4-SAS has at least one prolongation, but for n _ 14, there 
are some 4-SAS without any prolongation (denoted by * in Table 1). 

2.2. The algorithm for generating the smallest 4-SAS for n = 1, 2, * can be 
described in the following way (cf. 2.1): 

2.2.1, Start with n = 1, (a1) = (0). 
2.2.2. Write n, (a1, * , an). 
2.2.3. Multiply the number a, ** an by 4 (in the number system with the radix 4). 

Add 1 to n. 
2.2.4. Ask if the new sequence is 4-SAS. Yes: go to 2.2.2. No: go to 2.2.5. 

TABLE 1 

Order 
No. n= 14 n-15 n= 16 

1 01020103010201 010201030102010* 0102010301021013 
2 01020103010210 010201030102101 0102010301021230 
3 01020103010212 010201030102123 0102010301021231 
4 01020103010213 010201030102131 0102010301021232 
5 01020103012010* 010201030102132 0102010301021310 
6 01020103012013 010201030120131 0102010301021312 
7 01020103012023 010201030120230 0102010301021320 
8 01020103012101 010201030120232 0102010301021321 
9 01020103012103 010201030121012 0102010301021323 

10 01020103012130 010201030121013 0102010301201310 
11 01020103012131 010201030121031 0102010301201312 
12 01020103012132 010201030121301 0102010301202302 
13 01020103012310 010201030121303 0102010301202303 
14 01020103012312 010201030121310 0102010301202320 
15 01020103012313 010201030121312 0102010301202321 
16 01020103012320 010201030121321 0102010301210123 
17 01020103012321 010201030121323 0102010301210130 
18 01020103020102 010201030123101 0102010301210131 
19 01020103020120 010201030123103 0102010301210132 
20 01020103020121 010201030123121 0102010301210310 
21 01020103020123 010201030123130 0102010301210312 
22 01020103021013 010201030123202 0102010301210313 
23 01020103021020* 010201030123203 0102010301213010* 
24 01020103021023 010201030123212 0102010301213012 
25 01020103021202 010201030201020* 0102010301213013 
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2.2.5. Add 1 to the current sequence (in the number system with the radix 4). 
If a transfer from the most left position occurs, go to 2.2.6. Elsewhere, go to 2.2.4. 

2.2.6. Stop. 
In other words, if (al, , a.) is the smallest 4-SAS of length n, we will try to 

prolong it successively by adjoining to the end 0, 1, 2, 3. The first prolongation 

TABLE 2 

Length n 
SI S3+1/Sn 

1 1 1 2.75 14 3 
3 2 

2 12 6 
3 2 

3 36 12 
2.6 1.5 

4 96 18 
2.75 1.6 

5 264 30 
2.45 

6 648 30 
2.4 0.6 

7 1584 18 
2.257 

8 3576 None 
2.201342282 

9 7872 
1.951219512 

10 15360 
1.9 

11 29184 
1.751644737 

12 51120 
1.768075117 

13 90384 
1.753053638 

14 158448 
1.806876704 

15 286296 
1.78070249 

16 509808 
1.773797194 

17 904296 
1.721011704 

18 1556304 
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TABLE 3 

01020103010210131012132021013010203020120231012023 
20212303230102030201213010203013032131012101301020 
10302303101201032021202320130201312130313212023020 
13230313032010203021013121020301323013121012132010 
20302102321201303230131210121320132302010231232023 
21201213010201030212302101310121321202123130102010 
30213230213013120312320231210121310232131013121030 
10231323023101312320210130102101303202123032301020 
13121303132021231303132302321201032313201213121013 
01021230123130312320231210203013123130323031012320 
30102010310121310302012312102032021020313032021303 
132101213120103010203213230121013021231210 

(if any) is the smallest 4-SAS of the length n + 1. If there is no prolongation of 
(al, * * *, a") then we take instead of it the following greater 4-SAS of length n (with 
regard to the lexicographical order-cf. 2.1) and proceed in a similar way. The 
procedure stops if no 4-SAS of length n has any prolongation. 

Some of the results obtained by using this algorithm follow. 
The longest 4-SAS I found is the following smallest 4-SAS of length 592: 
The preceding 4-SAS was not found at once and Table 4 shows the necessary 

computing time for generating the smallest 4-SASs for different lengths n: 
We can see that for increasing n, the indicated computing time increases very 

rapidly. This increase is partially due to the increase in length, but mostly it is caused 
by the fact that we do not have available for a given n all lexicographically ordered 
4-SASs of length n. If a 4-SAS has no prolongation then we have to determine the 
next greater 4-SAS of the same length and try to prolong that one. This procedure 
is very costly with regard to time. Table 5 lists the lengths n < 592 having the prop- 

TABLE 4 

Length n 50 100 200 261 299 376 434 466 

Time(min) 0.17 0.60 2.57 5.57 10.57 25.57 40.57 55.57 

Length n 509 530 588 592 

Time (min) 70.57 85.57 100.57 115.57 
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TABLE 5 

15(1), 23(1), 36(1), 62(2), 63(3), 85(1), 94(1), 

106(1), 119(2), 122(2), 124(1), 130(1), 135(1), 136(1), 140(1), 146(2), 
149(1), 153(1), 154(1), 167(l), 172(1), 176(1), 177(1), 187(4), 188(1), 
189(1), 

205(1), 216(3), 222(1), 224(1), 239(1), 240(1), 241(1), 243(1), 248(1), 
249(1), 282(1), 283(4), 284(2), 289(2), 290(1), 299(3), 

305(1), 306(1), 308(1), 310(2), 314(1), 321(1), 323(3), 326(1), 331(6), 
332(1), 335(1), 339(1), 343(1), 358(1), 363(1), 369(2), 370(4), 373(1), 
375(1), 376(1), 390(1), 392(2), 394(2), 395(3), 

404(1), 412(1), 415(1), 420(1), 424(1), 428(2), 434(1), 435(1), 445(2), 
446(1), 447(2), 449(1), 456(1), 462(2), 463(1), 464(1), 470(3), 473(2), 
478(2), 484(1), 485(1), 490(1), 491(2), 

508(1), 509(1), 510(2), 515(1), 525(1), 529(1), 530(1), 532(3), 542(1), 
543(1), 544(1), 549(1), 554(2), 559(1), 574(1), 583(1), 588(1), 589(1), 
591(1), 592(?) 

erty that the smallest 4-SAS of length n has no prolongation. The number i in paren- 
theses shows that i smallest 4-SASs of length n (with regard to the lexicographical 
order) have no prolongation. 

The most unfavorable case occurs for n = 331 when 6 smallest 4-SASs have no 
prolongation. But the most frequent case is that only one smallest 4-SAS has no 
prolongation. 

Frequency of symbols in the smallest 4-SAS of length 592 and several consecutive 
segments is given in Table 6. We can see from the second column that the frequency 
of an arbitrary symbol from E4 in a 4-SAS (or its segment) of length 100 varies 
between 17 and 35. 

TABLE 6 

Length 

Symbol 1-100 101-200 1 201-300 301-400 401-500 501-592 1-592 
_ _ _ _ I-,T __ __s_ __ _ _ . __. _ . _ _ 

0 35 29 26 24 20 26 160 
1 26 25 27 27 27 26 158 
2 22 j 23 28 24 24 21 142 
3 17 1 23 19 25 29 19 132 
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Conclusions. Unfortunately, the problem of determining an infinite 4-SAS re- 
mains open. This paper is only a small contribution toward its solution. From 
Table 2 we can see that the number of 4-SASs of length n grows quickly for small 
n and will probably continue. In spite of the fact that the time for generating the 
smallest 4-SAS increases for greater n (Table 4) the prolongation is not more dif- 
ficult in essence (Tables 5, 6). That leads to the following conjecture: 

The algorithm 2.2 will never stop, i.e. for any n 1, 2, * * there exists a 4-SAS. 
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